NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria.

Author:

Meier U T1,Blobel G1

Affiliation:

1. Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461.

Abstract

We report the identification and molecular characterization of a novel nucleolar protein of rat liver. As shown by coimmunoprecipitation this protein is associated with a previously identified nucleolar protein, Nopp140, in an apparently stoichiometric complex and has therefore been termed NAP57 (Nopp140-associated protein of 57 kD). Immunofluorescence and immunogold electron microscopy with NAP57 specific antibodies show colocalization with Nopp140 to the dense fibrillar component of the nucleolus, to coiled bodies, and to the nucleoplasm. Immunogold staining in the nucleoplasm is occasionally seen in the form of curvilinear tracks between the nucleolus and the nuclear envelope, similar to those previously reported for Nopp140. These data suggest that Nopp140 and NAP57 are indeed associated with each other in these nuclear structures. The cDNA deduced primary structure of NAP57 shows a protein of a calculated molecular mass of 52,070 that contains a putative nuclear localization signal near its amino and carboxy terminus and a hydrophobic amino acid repeat motif extending across 84 residues. Like Nopp140, NAP57 lacks any of the known consensus sequences for RNA binding which are characteristic for many nucleolar proteins. Data bank searches revealed that NAP57 is a highly conserved protein. A putative yeast (S. cerevisiae) homolog is 71% identical. Most strikingly, there also appears to be a smaller prokaryotic (E. coli and B. subtilis) homolog that is nearly 50% identical to NAP57. This indicates that NAP57 and its putative homologs might serve a highly conserved function in both pro- and eukaryotes such as chaperoning of ribosomal proteins and/or of preribosome assembly.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 230 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3