nup1 mutants exhibit pleiotropic defects in nuclear pore complex function.

Author:

Bogerd A M1,Hoffman J A1,Amberg D C1,Fink G R1,Davis L I1

Affiliation:

1. Howard Hughes Medical Institute, Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

The NUP1 gene of Saccharomyces cerevisiae encodes one member of a family of nuclear pore complex proteins (nucleoporins) conserved from yeast to vertebrates. We have used mutational analysis to investigate the function of Nup1p. Deletion of either the amino- or carboxy-terminal domain confers a lethal phenotype, but partial truncations at either end affect growth to varying extents. Amino-terminal truncation causes mislocalization and degradation of the mutant protein, suggesting that this domain is required for targeting Nup1p to the nuclear pore complex. Carboxy-terminal mutants are stable but do not have wild-type function, and confer a temperature sensitive phenotype. Both import of nuclear proteins and export of poly(A) RNA are defective at the nonpermissive temperature. In addition, nup1 mutant cells become multinucleate at all temperatures, a phenotype suggestive of a defect in nuclear migration. Tubulin staining revealed that the mitotic spindle appears to be oriented randomly with respect to the bud, in spite of the presence of apparently normal cytoplasmic microtubules connecting one spindle pole body to the bud tip. EM analysis showed that the nuclear envelope forms long projections extending into the cytoplasm, which appear to have detached from the bulk of the nucleus. Our results suggest that Nup1p may be required to retain the structural integrity between the nuclear envelope and an underlying nuclear scaffold, and that this connection is required to allow reorientation of the nucleus in response to cytoskeletal forces.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3