Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation.

Author:

Vey M1,Schäfer W1,Berghöfer S1,Klenk H D1,Garten W1

Affiliation:

1. Institut f. Virologie, Philipps-Universität Marburg, Germany.

Abstract

We have cloned a bovine cDNA encoding the trans-Golgi network (TGN) protease furin and expressed it via recombinant vaccinia viruses to investigate intracellular maturation. Pulse-chase labeling reveals that the 104-kD pro-furin bearing high mannose N-glycans is rapidly processed into the 98-kD protease whose N-glycans remain sensitive to endoglycosidase H for a certain period of time. Furthermore, in the presence of brefeldin A, pro-furin cleavage occurs. From these data we conclude that the ER is the compartment of propeptide removal. Studies employing the ionophore A23187 and DTT show that autocatalysis is Ca2+ dependent and that it does not occur under reducing conditions. Pro-furin produced under these conditions never gains endo H resistance indicating that it is retained in the ER. Coexpression of furin with the fowl plague virus hemagglutinin in the presence of brefeldin A and monensin reveals that furin has to enter the Golgi region to gain substrate cleaving activity. N-glycans of furin are sialylated proving its transit through the trans-Golgi network. A truncated form of furin is found in supernatants of cells. Truncation is inhibited in the absence of Ca2+ ions and in the presence of acidotropic agents indicating that it takes place in an acidic compartment of cells. Comparative analysis with furin expressed from cDNA reveals that the truncated form prevails in preparations of biologically active, endogenous furin obtained from MDBK cells. This observation supports the concept that secretion of truncated furin is a physiological event that may have important implications for the processing of extracellular substrates.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3