Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line.

Author:

Watabe M1,Nagafuchi A1,Tsukita S1,Takeichi M1

Affiliation:

1. Department of Biophysics, Faculty of Science, Kyoto University, Japan.

Abstract

PC9 lung carcinoma cells cannot tightly associate with one another, and therefore grow singly, despite their expression of E-cadherin, because of their lack of alpha-catenin, a cadherin-associated protein. However, when the E-cadherin is activated by transfection with alpha-catenin cDNA, they form spherical aggregates, each consisting of an enclosed monolayer cell sheet. In the present work, we examined whether the alpha-catenin-transfected cell layers expressed epithelial phenotypes, by determining the distribution of various cell adhesion molecules on their surfaces, including E-cadherin, ZO-1, desmoplakin, integrins, and laminin. In untransfected PC9 cells, all these molecules were randomly distributed on their cell surface. In the transfected cells, however, each of them was redistributed into a characteristic polarized pattern without a change in the amount of expression. Electron microscopic study demonstrated that the alpha-catenin-transfected cell layers acquired apical-basal polarity typical of simple epithelia; they formed microvilli only on the outer surface of the aggregates, and a junctional complex composed of tight junction adherens junction, and desmosome arranged in this order. These results indicate that the activation of E-cadherin triggered the formation of the junctional complex and the polarized distribution of cell surface proteins and structures. We also found that, in untransfected PC9 cells, ZO-1 formed condensed clusters and colocalized with E-cadherin, but that other adhesion molecules rarely showed such colocalization with E-cadherin, suggesting that there is some specific interaction between ZO-1 and E-cadherin even in the absence of cell-cell contacts. In addition, we found that the activation of E-cadherin caused a retardation of PC9 cell growth. Thus, we concluded that the E-cadherin-catenin adhesion system is essential not only for structural organization of epithelial cells but also for the control of their growth.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3