Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis

Author:

Baldwin TJ1,Yoshihara CM1,Blackmer K1,Kintner CR1,Burden SJ1

Affiliation:

1. Biology Department, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

The level of transcripts encoding the skeletal muscle acetylcholine receptor (AChR) was determined during embryonic development in Xenopus laevis. cDNAs encoding the alpha, gamma, and delta subunits of the Xenopus AChR were isolated from Xenopus embryo cDNA libraries using Torpedo AChR cDNAs as probes. The Xenopus AChR cDNAs have greater than 60% amino acid sequence homology to their Torpedo homologues and hybridize to transcripts that are restricted to the somites of developing embryos. Northern blot analysis demonstrates that a 2.3-kb transcript hybridizes to the alpha subunit cDNA, a 2.4-kb transcript hybridizes to the gamma subunit cDNA, and that two transcripts, of 1.9 and 2.5 kb, hybridize to the delta subunit cDNA. RNase protection assays demonstrate that transcripts encoding alpha, gamma, and delta subunits are coordinately expressed at late gastrula and that the amount of each transcript increases in parallel with muscle-specific actin mRNA during the ensuing 12 h. After the onset of muscle activity the level of actin mRNA per somite remains relatively constant, whereas the level of alpha subunit and delta subunit transcripts decrease fourfold per somite and the level of gamma subunit transcript decreases greater than 50-fold per somite. The decrease in amount of AChR transcripts per somite, however, occurs when embryos are paralyzed with local anaesthetic during their development. These results demonstrate that AChR transcripts in Xenopus are initially expressed coordinately, but that gamma subunit transcript levels are regulated differently than alpha and delta at later stages. Moreover, these results demonstrate that AChR transcript levels in Xenopus myotomal muscle cells are not responsive to electrical activity and suggest that AChR transcript levels are influenced by other regulatory controls.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3