Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: colocalization of cell surface urokinase with vinculin.

Author:

Hébert C A1,Baker J B1

Affiliation:

1. Department of Biochemistry, University of Kansas, Lawrence 66045.

Abstract

Several cell types display binding sites for [125I]urokinase (Vassalli, J.-D., D. Baccino, D. Belin. 1985. J. Cell Biol. 100:86-92) which in certain cases are occupied with endogenous urokinase. These sites appear to focus urokinase at cell surfaces and hence may participate in tissue matrix destruction and cell invasion. Recently Pöllänen et al. (1987) demonstrated that the cell surface urokinase of human fibroblasts and fibrosarcoma cells is deposited underneath the cells in strands, apparently at sites of cell-to-substratum contact. Here, using immunofluorescence double labeling, we show that the urokinase strands present on human foreskin fibroblasts are colocalized with strands of vinculin, an intracellular actin-binding protein that is deposited at cell-to-substratum focal adhesion sites. Thus, this indicates linkage of the plasminogen/plasmin system both to sites of cell adhesion and to the cytoskeleton. The urokinase strands on HT 1080 fibrosarcoma cells are more numerous and have shapes that are more tortuous than those on normal fibroblasts. In intact HT 1080 cells, colocalized vinculin strands are obscured by an intense background of soluble vinculin but are apparent on isolated ventral plasma membranes. Certain properties of the urokinase strands suggest that they are related to the [125I]urokinase-binding sites that have been described by several groups: (a) incubating fibroblasts with dexamethasone for 48 h or at pH 3 at 5 degrees C for 10 min greatly decreases the number and intensity of the urokinase strands; (b) strands reappear when glucocorticoid-treated cells are incubated with exogenous 54-kD (but not 35-kD) urokinase, and this process is inhibited by a previously described 16-amino acid peptide that blocks [125I]urokinase binding to the cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3