Affiliation:
1. Program in Neuroscience, Baylor College of Medicine, Houston, Texas 77030.
Abstract
Specific DNA fragments complementary to the 3' untranslated regions of the beta-, alpha-cardiac, and alpha-skeletal actin mRNAs were used as in situ hybridization probes to examine differential expression and distribution of these mRNAs in primary myogenic cultures. We demonstrated that prefusion bipolar-shaped cells derived from day 3 dissociated embryonic somites were equivalent to myoblasts derived from embryonic day 11-12 pectoral tissue with respect to the expression of the alpha-cardiac actin gene. Fibroblasts present in primary muscle cultures were not labeled by the alpha-cardiac actin gene probe. Since virtually all of the bipolar cells express alpha-cardiac actin mRNA before fusion, we suggest that the bipolar phenotype may distinguish a committed myogenic cell type. In contrast, alpha-skeletal actin mRNA accumulates only in multinucleated myotubes and appears to be regulated independently from the alpha-cardiac actin gene. Accumulation of alpha-skeletal but not alpha-cardiac actin mRNA can be blocked by growth in Ca2+-deficient medium which arrests myoblast fusion. Thus, the sequential appearance of alpha-cardiac and then alpha-skeletal actin mRNA may result from factors that arise during terminal differentiation. Finally, the beta-actin mRNA was located in both fibroblasts and myoblasts but diminished in content during myoblast fusion and was absent from differentiated myotubes. It appears that in primary myogenic cultures, an asynchronous stage-dependent induction of two different alpha-striated actin mRNA species occurs concomitant with the deinduction of the nonmuscle beta-actin gene.
Publisher
Rockefeller University Press
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献