Nerve growth factor regulates both the phosphorylation and steady-state levels of microtubule-associated protein 1.2 (MAP1.2).

Author:

Aletta J M1,Lewis S A1,Cowan N J1,Greene L A1

Affiliation:

1. Department of Pharmacology, New York University School of Medicine, New York 10016.

Abstract

This study characterizes effects of nerve growth factor (NGF) on the steady-state level and phosphorylation of a high molecular mass microtubule-associated protein in PC12 rat pheochromocytoma cells. Past work showed that NGF significantly raises the relative levels of this phosphoprotein, designated MAP1.2, with a time course similar to that of neurite outgrowth. To study this in greater detail, MAP1.2 in PC12 cell lysates was resolved by SDS-PAGE in gels containing 3.25% acrylamide/4 M urea and identified by comigration with material immunoprecipitated from the lysates by MAP1 antibodies. Quantification by metabolic radiolabeling with [35S]methionine or by silver staining revealed a 3.0-3.5-fold increase in MAP1.2 levels relative to total cell protein after NGF treatment for 2 wk or longer. A partial increase was detectable after 3 d, but not after 2 h of NGF exposure. As measured by incorporation of [32P]phosphate, NGF had a dual effect on MAP1.2. Within 15 min to 2 h, NGF enhanced the incorporation of phosphate into MAP1.2 by two- to threefold relative to total cell phosphoproteins. This value slowly increased thereafter so that by 2 wk or more of NGF exposure, the average enhancement of phosphate incorporation per MAP1.2 molecule was over fourfold. The rapid action of NGF on MAP1.2 could not be mimicked by either epidermal growth factor, a permeant cAMP derivative, phorbol ester, or elevated K+, each of which alters phosphorylation of other PC12 cell proteins. SDS-PAGE revealed multiple forms of MAP1.2 which, based on the effects of alkaline phosphatase on their electrophoretic mobilities, differ, at least in part, in extent of phosphorylation. Before NGF treatment, most PC12 cell MAP1.2 is in more rapidly migrating, relatively poorly phosphorylated forms. After long-term NGF exposure, most is in more slowly migrating, more highly phosphorylated forms. The effects of NGF on the rapid phosphorylation of MAP1.2 and on the long-term large increase in highly phosphorylated MAP1.2 forms could play major functional roles in NGF-mediated neuronal differentiation. Such roles may include effects on microtubule assembly, stability, and cross-linking and, possibly for the rapid effects, nuclear signaling.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3