Norepinephrine down-regulates the activity of protein S on endothelial cells.

Author:

Brett J G1,Steinberg S F1,deGroot P G1,Nawroth P P1,Stern D M1

Affiliation:

1. Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

Abstract

The adrenergic agonist norepinephrine is shown to stimulate endothelium to induce protein S release and degradation, leading to diminished anti-coagulant activity and to down-regulation of protein S cell surface-binding sites. Norepinephrine-induced release of intracellular protein S was blocked by the alpha 1-adrenergic antagonist prazosin (10(-7) M) but not by the alpha-adrenergic antagonist propranolol (10(-6) M) or the alpha 2-adrenergic antagonist yohimbine (10(-5) M) indicating that this response resulted from the specific interaction of norepinephrine with a class of alpha 1-adrenergic receptors not previously observed on endothelium. Attenuation of norepinephrine-induced release of protein S by pertussis toxin in association with the ADP-ribosylation of a 41,000-D membrane protein indicates that this intracellular transduction pathway involves a regulatory G protein. The observation that protein S was released from endothelium in response to maneuvers which elevate intracellular calcium or activate protein kinase C suggests that the response may be mediated via intermediates generated through the hydrolysis of phosphoinositides. Morphologic studies were consistent with a mechanism in which norepinephrine causes exocytosis of vesicles containing protein S. In addition to release of protein S, norepinephrine also induced loss of endothelial cell protein S-binding sites, thereby blocking effective activated protein C-protein S-mediated factor Va inactivation on the cell surface. Norepinephrine-mediated endothelial cell stimulation thus results in loss of intracellular protein S and suppression of cell surface-binding sites, modulating the anti-coagulant protein C pathway on the vessel wall. These studies define a new relationship between an anti-coagulant mechanism and the autonomic nervous system, and indicate a potential role for an heretofore unrecognized class of alpha 1-adrenergic receptors in the regulation of endothelial cell physiology.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3