EARLY STAGES IN THE DEVELOPMENT OF PLASTID FINE STRUCTURE IN RED AND FAR-RED LIGHT

Author:

Klein Shimon1,Bryan G.1,Bogorad Lawrence1

Affiliation:

1. From the Department of Botany, The University of Chicago, Chicago, and the Argonne National Laboratory, Argonne, Illinois

Abstract

Developmental changes in fine structure were studied in plastids of etiolated bean leaves during the time required for the protochlorophyllide-chlorophyllide transformation and the following lag phase prior to chlorophyll accumulation. In agreement with some other workers, two distinct stages of change in the fine structure of proplastids were found to occur upon illumination during this period. The first involves a dissociation of the previously fused units in the prolamellar bodies of the proplastids and occurs simultaneously with the protochlorophyllide-chlorophyllide conversion in light of 655 mµ, but not of 682, 700, or 730 mµ. The effect of the red light could not be reversed by a simultaneously supplied stronger far-red irradiation. The energy requirements for these structural changes parallel those for the pigment conversion. During the following step the vesicles which arose from the fused units of the prolamellar body were dispersed in rows through the stroma, and the prolamellar bodies themselves disappeared. For these changes to occur, higher light energies were required and the leaves had to be illuminated for longer periods. A red preillumination seemed to accelerate the development somewhat. The structural changes could be induced by light of 655 mµ, but also, to a lesser degree, of 730 mµ. No measurable additional chlorophyll accumulated during this period. Thus, the structural changes observed were independent of major changes in pigment content.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3