Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues.

Author:

Nothwehr S F1,Roberts C J1,Stevens T H1

Affiliation:

1. Institute of Molecular Biology, University of Oregon, Eugene 97403.

Abstract

The mechanism by which yeast dipeptidyl aminopeptidase (DPAP) A, type II integral membrane protein, is retained in the late Golgi apparatus has been investigated. Prior work demonstrated that the 118-amino acid cytoplasmic domain is both necessary and sufficient for Golgi retention and that mutant or overexpressed DPAP A no longer retained in the Golgi was delivered directly to the vacuolar membrane (Roberts, C. J., S. F. Nothwehr, and T. H. Stevens. 1992. J. Cell Biol. 119:69-83). Replacement of the DPAP A transmembrane domain with a synthetic hydrophobic sequence did not affect either Golgi retention of DPAP A or vacuolar delivery of the retention-defective form of DPAP A. These results indicate that the DPAP A transmembrane domain is not involved in either Golgi retention or targeting of this membrane protein. A detailed mutational analysis of the cytoplasmic domain of DPAP A indicated that the most important elements for retention were within the eight residue stretch 85-92. A 10-amino acid region from DPAP A (81-90) was sufficient for Golgi retention of alkaline phosphatase, a type II vacuolar membrane protein. Detailed mutational analysis within this 10-amino acid sufficient region demonstrated that a Phe-X-Phe-X-Asp motif was absolutely required for efficient retention. The efficiency of Golgi retention via the DPAP A signal could be diminished by overexpression of wild type but not retention-defective versions of Kex2p, another late Golgi membrane protein, suggesting that multiple Golgi membrane proteins may be retained by a common machinery. These results imply a role for a cytoplasmic signal involving aromatic residues in retention of late Golgi membrane proteins in the yeast Saccharomyces cerevisiae.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3