Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes.

Author:

Bubien J K1,Zhou L J1,Bell P D1,Frizzell R A1,Tedder T F1

Affiliation:

1. Department of Medicine, University of Alabama, Birmingham 35294.

Abstract

CD20 is a plasma membrane phosphoprotein expressed exclusively by B lymphocytes. mAb binding to CD20 alters cell cycle progression and differentiation, indicating that CD20 plays an essential role in B lymphocyte function. Whole-cell patch clamp and fluorescence microscopy measurements of plasma membrane ionic conductance and cytosolic-free Ca2+ activity, respectively, were used to directly examine CD20 function. Transfection of human T and mouse pre-B lymphoblastoid cell lines with CD20 cDNA and subsequent stable expression of CD20 specifically increased transmembrane Ca2+ conductance. Transfection of CD20 cDNA and subsequent expression of CD20 in nonlymphoid cells (human K562 erythroleukemia cells and mouse NIH-3T3 fibroblasts) also induced the expression of an identical transmembrane Ca2+ conductance. The binding of a CD20-specific mAb to CD20+ lymphoblastoid cells also enhanced the transmembrane Ca2+ conductance. The mAb-enhanced Ca2+ currents had the same conductance characteristics as the CD20-associated Ca2+ currents in CD20 cDNA-transfected cells. C20 is structurally similar to several ion channels; each CD20 monomer possesses four membrane spanning domains, and both the amino and carboxy termini reside within the cytoplasm. Biochemical cross-linking of cell-surface molecules with subsequent immunoprecipitation analysis of CD20 suggests that CD20 may be present as a multimeric oligomer within the membrane, as occurs with several known membrane channels. Taken together, these findings indicate that CD20 directly regulates transmembrane Ca2+ conductance in B lymphocytes, and suggest that multimeric complexes of CD20 may form Ca2+ conductive ion channels in the plasma membrane of B lymphoid cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 300 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3