Inositol 1,4,5-trisphosphate receptor in heart: evidence for its concentration in Purkinje myocytes of the conduction system.

Author:

Gorza L1,Schiaffino S1,Volpe P1

Affiliation:

1. Dipartimento di Scienze Biomediche Sperimentali dell'Università di Padova, Italy.

Abstract

Inositol 1,4,5-trisphosphate (IP3) is one of the second messengers capable of releasing Ca2+ from sarcoplasmic reticulum/ER subcompartments. The mRNA encoding the intracellular IP3 receptor (Ca2+ channel) has been detected in low amounts in the heart of various species by Northern blot analysis. The myocardium, however, is a heterogeneous tissue composed of working myocytes and conduction system cells, i.e., myocytes specialized for the beat generation and stimulus propagation. In the present study, the cellular distribution of the heart IP3 receptor has been investigated. [3H]IP3 binding experiments, Western blot analysis and immunofluorescence, with anti-peptide antibodies specific for the IP3 receptor, indicated that the majority of Purkinje myocytes (the ventricular conduction system) express much higher IP3 receptor levels than atrial and ventricular myocardium. Heterogeneous distribution of IP3 receptor immunoreactivity was detected both at the cellular and subcellular levels. In situ hybridization to a riboprobe generated from the brain type 1 IP3 receptor cDNA, showed increased accumulation of IP3 receptor mRNA in the heart conduction system. Evidence for IP3-sensitive Ca2+ stores in Purkinje myocytes was obtained by double immunolabeling experiments for IP3 receptor and cardiac calsequestrin, the sarcoplasmic reticulum intralumenal calcium binding protein. The present findings provide a molecular basis for the hypothesis that Ca2+ release from IP3-sensitive Ca2+ stores evoked by alpha 1-adrenergic stimulation is responsible for the increase in automaticity of Purkinje myocytes (del Balzo, U., M. R. Rosen, G. Malfatto, L. M. Kaplan, and S. F. Steinberg. 1990. Circ. Res. 67:1535-1551), and open new perspectives in the hormonal modulation of chronotropism, and generation of arrhythmias.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3