Amino acid sequence RERMS represents the active domain of amyloid beta/A4 protein precursor that promotes fibroblast growth.

Author:

Ninomiya H1,Roch J M1,Sundsmo M P1,Otero D A1,Saitoh T1

Affiliation:

1. Department of Neurosciences, University of California, San Diego, La Jolla 92093.

Abstract

The growth of A-1 fibroblasts depends on exogenous amyloid beta/A4 protein precursor (APP), providing a simple bioassay to study the function of APP. Our preliminary study, testing the activity of a series of fragments derived from the secreted form of APP-695 (sAPP-695) on this bioassay, has shown that at least one of the active sites of sAPP-695 was localized within a 40-mer sequence (APP296-335, Kang sequence; Roch, J.-M., I. P. Shapiro, M. P. Sundsmo, D. A. C. Otero, L. M. Refolo, N. K. Robakis, and T. Saitoh. 1992. J. Biol. Chem. 267:2214-2221). In the present study, to further characterize the growth-promoting activity of sAPP-695 on fibroblasts, we applied a battery of synthetic peptides on this bioassay and found that: (a) the sequence of five amino acids, RERMS (APP328-332), was uniquely required for the growth-promoting activity of sAPP-695; (b) the activity was sequence-specific because the reverse-sequence peptide of the active domain had no activity; and (c) the four-amino-acid peptide RMSQ (APP330-333), which partially overlaps the COOH-terminal side of the active sequence RERMS, could antagonize the activity of sAPP-695. Furthermore, a recombinant protein which lacks this active domain (APP20-591 without 306-335) did not promote fibroblast cell growth, suggesting that this domain is the only site of sAPP-695 involved in the growth stimulation. The availability of these biologically active, short peptides and their antagonists should prove to be an essential step for the elucidation of APP involvement in regulation of cellular homeostasis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3