Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification.

Author:

Hansen S H1,Sandvig K1,van Deurs B1

Affiliation:

1. Department of Anatomy, Panum Institute, University of Copenhagen, Denmark.

Abstract

The effects of methods known to perturb endocytosis from clathrin-coated pits on the localization of clathrin and HA2 adaptors in HEp-2 carcinoma cells have been studied by immunofluorescence and ultrastructural immunogold microscopy, using internalization of transferrin as a functional assay. Potassium depletion, as well as incubation in hypertonic medium, remove membrane-associated clathrin lattices: flat clathrin lattices and coated pits from the plasma membrane, and clathrin-coated vesicles from the cytoplasm, as well as those budding from the TGN. In contrast, immunofluorescence microscopy using antibodies specific for the alpha- and beta-adaptins, respectively, and immunogold labeling of cryosections with anti-alpha-adaptin antibodies shows that under these conditions HA2 adaptors are aggregated at the plasma membrane to the same extent as in control cells. After reconstitution with isotonic K(+)-containing medium, adaptor aggregates and clathrin lattices colocalize at the plasma membrane as normally and internalization of transferrin resumes. Acidification of the cytosol affects neither clathrin nor HA2 adaptors as studied by immunofluorescence microscopy. However, quantitative ultrastructural observations reveal that acidification of the cytosol results in formation of heterogeneously sized and in average smaller clathrin-coated pits at the plasma membrane and buds on the TGN. Collectively, our observations indicate that the methods to perturb formation of clathrin-coated vesicles act by different mechanisms: acidification of the cytosol by affecting clathrin-coated membrane domains in a way that interferes with budding of clathrin-coated vesicles from the plasma membrane as well as from the TGN; potassium depletion and incubation in hypertonic medium by preventing clathrin and adaptors from interacting. Furthermore our observations show that adaptor aggregates can exist at the plasma membrane independent of clathrin lattices and raise the possibility that adaptor aggregates can form nucleation sites for clathrin lattices.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3