Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process.

Author:

Mayor S1,Presley J F1,Maxfield F R1

Affiliation:

1. Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.

Abstract

A central question in the endocytic process concerns the mechanism for sorting of recycling components (such as transferrin or low density lipoprotein receptors) from lysosomally directed components; membrane-associated molecules including receptors are generally directed towards the recycling pathway while the luminal content of sorting endosomes, consisting of the acid-released ligands, are lysosomally targeted. However, it is not known whether recycling membrane receptors follow bulk membrane flow or if these proteins are actively sorted from lysosomally directed material because of specific protein sequences and/or structural features. Using quantitative fluorescence microscopy we have determined the endocytic route and kinetics of traffic of the bulk carrier, membrane lipids, to address this issue directly. We show that N-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-epsilon-aminohexanoyl]- sphingosylphosphorylcholine (C6-NBD-SM) in endocytosed as bulk membrane, and it transits the endocytic system kinetically and morphologically identically to fluorescently labeled transferrin in a CHO cell line. With indistinguishable kinetics, the two labeled markers sort from lysosomally destined molecules in peripherally located sorting endosomes, accumulate in a peri-centriolar recycling compartment, and finally exit the cell. Other fluorescently labeled lipids, C6-NBD-phosphatidylcholine and galactosylceramide also traverse the same pathway. The constitutive nature of sorting of bulk membrane towards the recycling pathway and the lysosomal direction of fluid phase implies a geometric basis of sorting.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3