Affiliation:
1. From the Department of Pharmacology and the Department of Anatomy, Karolinska Institutet, Stockholm, Sweden.
Abstract
In vitro degranulation of rat mast cells was studied at different intervals ranging from 10 to 60 sec after adding the histamine liberator, compound 48/80 (0.4 µg/ml, 17°C). The ultrastructural changes were followed by electron microscopy, and parallel assays were made to determine the histamine released. In addition, the extracellular tracers lanthanum and hemoglobin (demonstrated by its peroxidative activity) were applied to mast cells to follow communication of the extracellular space with the cavities formed during degranulation. After a lag period of 10 sec, degranulation started in the most peripherally located granules. The perigranular membrane fused with the plasma membrane, resulting in a pore bridged by a thin diaphragm. This was followed by rupture of the diaphragm and extrusion of the granule matrix (exocytosis). The process advanced towards the cell interior by fusion and opening of the deeper situated granules to the formerly opened granule cavities. At the end of the process, the cell was filled by a system of complicated cavities containing a number of altered granules. Extracellular tracers have shown that these intracellular cavities were in unbroken communication with the extracellular space from the very beginning of their formation. Both lanthanum and hemoglobin were found to be adsorbed to the limiting membrane of the cavities and bound to altered mast cell granules. In contrast, no tracer substance was present in nondegranulating mast cells. Degranulation of mast cells by compound 48/80 is regarded as a sequential exocytosis, a process similar to that described for some exocrine gland cells. All the "intracellular" cavities, formed by degranulation, were shown to communicate with the extracellular space; consequently, granules lying in these cavities must be considered as biologically extracellular. The present findings support the view that histamine is released from the granule matrix by the extracellular ionic milieu.
Publisher
Rockefeller University Press
Cited by
304 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献