THE ISOLATION AND PARTIAL CHARACTERIZATION OF THE PYRENOID PROTEIN OF EREMOSPHAERA VIRIDIS

Author:

Holdsworth Robert H.1

Affiliation:

1. From the Department of Biology, Princeton University, Princeton, New Jersey 08540.

Abstract

The pyrenoids of Eremosphaera viridis, a green alga, were isolated by density gradient centrifugation and their physical and enzymatic properties were studied. The ultraviolet absorption spectrum of sodium dodecyl sulfate (SDS) extracts of pyrenoids showed a single peak at a wavelength of 277 nm, indicating the presence of protein and the probable absence of nucleic acid. Upon electrophoresis on polyacrylamide gels containing SDS, 16 bands were resolved of which two, together, accounted for 90% of the total protein on the gels. The molecular weights of these two proteins were estimated to be 59,000 and 12,300 and the ratio by weight of the larger to the smaller protein was found to be 2:1. The physical and enzymatic properties of these two proteins were found to closely resemble the properties reported in the literature for the subunits of fraction I protein. Both pyrenoids and fraction I protein are localized in the chloroplast, and both have two principal protein components. The molecular weights and relative ratio of the two pyrenoid components are very similar to those of the two components of fraction I protein. The pyrenoid was found to contain a high specific activity of ribulose-1,5-diphosphate carboxylase which is the same enzymatic activity exhibited by fraction I protein. The presence of ribose-5-phosphate isomerase and ribulose-5-phosphate kinase activities was also noted in pyrenoid preparations. It is suggested that the pyrenoid contains fraction I protein and possibly other enzymes of the Calvin-Bassham carbon dioxide fixing pathway.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The pyrenoid: the eukaryotic CO2-concentrating organelle;The Plant Cell;2023-06-04

2. The chloroplast in a changing environment: from genome to proteome;The Chlamydomonas Sourcebook;2023

3. What are the criteria for morphological cell death inDunaliella salina?;2022-12-14

4. Cell Biology of Organelles;The Molecular Life of Diatoms;2022

5. Pyrenoids: CO2-fixing phase separated liquid organelles;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3