The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails.

Author:

Sale W S

Abstract

Structural studies of stationary principal bends and of definitive patterns of spontaneous microtubule sliding disruption permitted description of the bending axis in sea urchin sperm tail axonemes. Lytechinus pictus sperm were demembranated in a buffer containing Triton X-100 and EGTA. Subsequent resuspension in a reactivation buffer containing 0.4 mM CaCl2 and 1.0 mM MgATP2- resulted in quiescent, rather than motile, cells and each sperm tail axoneme took on an extreme, basal principal bend of 5.2 rad. Thereafter, such flagellar axonemes began to disrupt spontaneously into two subsets of microtubules by active sliding requiring ATP. Darkfield light microscopy demonstrated that subset "1" is composed of microtubules from the inside edge of the principal bend. Subset "2" is composed of microtubules from the outside edge of the principal bend and always scatters less light in darkfield than subset 1. Subset 2, which always slides in the proximal direction, relative to subset 1, results in a basal loop of microtubules, and the subset 2 loop is restricted to the bend plane during sliding disruption. Electron microscopy revealed that doublets 8, 9, 1, 2, 3 and the central pair comprise subset 1, and doublets 4, 5, the bridge, 6, and 7 comprise subset 2. The microtubules of isolated subset 2 are maintained in a circular arc in the absence of spoke-central pair interaction. Longitudinal sections show that the bending plane bisects the central pair. We therefore conclude that the bend plane passes through doublet 1 and the 5-6 bridge and that doublet 1 is at the inside edge of the principal bend. Experimental definition of the axis permits explicit discussion of the location of active axonemal components which result in Ca2+-induced stationary basal bends and explicit description of components responsible for alternating basal principal and reverse bends.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3