Probing the mechanism of incorporation of fluorescently labeled actin into stress fibers.

Author:

Amato P A,Taylor D L

Abstract

The mechanism of actin incorporation into and association with stress fibers of 3T3 and WI38 fibroblasts was examined by fluorescent analog cytochemistry, fluorescence recovery after photobleaching (FRAP), image analysis, and immunoelectron microscopy. Microinjected, fluorescein-labeled actin (AF-actin) became associated with stress fibers as early as 5 min post-injection. There was no detectable cellular polarity in the association of AF-actin with pre-existing stress fibers relative to perinuclear or peripheral regions. The rate of incorporation was quantified by image analysis of images generated with a two-dimensional photon counting microchannel plate camera. After equilibration of up to 2 h post-injection, FRAP demonstrated that actin subunits exchanged rapidly between filaments in stress fibers and the surrounding cytoplasm. When co-injected with rhodamine-labeled bovine serum albumin as a control, only actin was detected in the phase-dense stress fibers. The control protein was excluded from fibers and any linear fluorescence of the control was demonstrated as a pathlength artifact. The incorporation of AF-actin into stress fibers was studied by immunoelectron microscopy using anti-fluorescein as the primary antibody and goat anti-rabbit IgG coupled to peroxidase as the secondary antibody. At 5 min post-injection, reaction product was localized periodically in some fibers with a periodicity of approximately 0.75 microns. In large diameter fibers at 5 min post-injection, the analog was seen first on the surface of fibers, with individual filaments resolvable within the core. In the same cell, thinner diameter fibers were labeled uniformly throughout the diameter. By 20 min post-injection, most fibers were uniformly labeled. We conclude that the rate of actin subunit exchange in vivo is extremely rapid with molecular incorporation into actin filaments of stress fibers occurring as early as a few minutes post-injection. Exchange appears to first occur in filaments along the surface of stress fibers and then into more central regions in a periodic manner. We suggest that the periodic localization of actin at very early time points is due to a local microheterogeneity in which microdomains of fast vs. slower incorporation result from the periodic localization of actin-binding protein, such as alpha-actinin, along the length of the fiber.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3