Commitment to expression of the metalloendopeptidases, collagenase and stromelysin: relationship of inducing events to changes in cytoskeletal architecture.

Author:

Werb Z,Hembry R M,Murphy G,Aggeler J

Abstract

Agents that alter the morphology of rabbit synovial fibroblasts induce synthesis of the metalloendopeptidases, collagenase and stromelysin. We studied the relationship of cytoskeletal changes to the commitment to expression of these metalloendopeptidases. Cells treated with cytochalasin B (CB) or 12-O-tetradecanoylphorbol-13-acetate rounded, and only cells that had lost their stress fibers expressed collagenase and stromelysin, as determined by immunofluorescence. We concentrated on the effects of CB because of its rapid reversibility. When CB was added for 1-24 h, then removed, the cells respread within 30-60 min. The minimum period of CB treatment that committed cells to the subsequent synthesis of collagenase and stromelysin was 3 h. After initial treatment with 2 micrograms/ml CB for 3-24 h, or with various concentrations of CB (0-2 micrograms/ml) for 24 h, both enzyme activity and biosynthesis of the proenzymes showed a graded increase when measured at 24 h. Even after treatment with 2 micrograms/ml CB for only 3 h, greater than 85% of all cells were positive for both collagenase and stromelysin when cells were monitored by immunofluorescence. In contrast, when the dependence of collagenase and stromelysin expression on the inducing concentration of CB was examined, there was a dose-dependent increase in the number of cells positive for collagenase and stromelysin, as determined by immunofluorescence. Thus, at low concentrations of CB (less than 0.5 micrograms/ml), a heterogeneous population response was observed. These results suggest that the commitment of fibroblasts to induction of the metalloproteinases is a stochastic process in which a second signal that correlates with the disruption of the actin cytoskeleton may be rate-limiting for collagenase and stromelysin gene expression.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3