Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy.

Author:

Kuriyama R,Borisy G G

Abstract

In interphase Chinese hamster ovary (CHO) cells, the centrosome is attached to the nucleus very firmly. This nuclear-centrosome complex is isolated as a coherent structure by lysis and extraction of cells with Triton X-100 in a low ionic strength medium. Under these conditions, the ultrastructure of the centrioles attached to the nucleus can be discerned by electron microscopy of whole-mount preparations. The structural changes of the centrioles as a function of the cell cycle were monitored by this technique. Specifically, centriolar profiles were placed into six categories according to their orientation and the length ratio of daughter and parent centrioles. The proportion of centrioles in each category was plotted as a frequency histogram. The morphological changes in the centriole cycle were characterized by three distinguishable events: nucleation, elongation, and disorientation. The progress of centrioles through these stages was determined in synchronous populations of cells starting from S or M phase, in cells inhibited in DNA synthesis by addition of thymidine, and in cytoplasts. The results provide a quantitative description of the events of the centriole cycle. They also show that, in complete cells, nucleation, elongation, and disorientation are not dependent upon DNA synthesis. However, in cytoplasts, although elongation and disorientation occur as in normal cells, nucleation is blocked. Procentriole formation appeared to be inhibited by the removal of the nucleus. We suggest that coordination of centriole replication and nuclear replication may depend upon a signal arising from the nucleus.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3