EFFECTS OF PHOSPHOTUNGSTATE NEGATIVE STAINING ON THE MORPHOLOGY OF THE ISOLATED GOLGI APPARATUS

Author:

Cunningham William P.1,Staehelin L. Andrew1,Rubin Robert W.1,Wilkins Ross1,Bonneville Mary1

Affiliation:

1. From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80302.

Abstract

Isolated Golgi complexes can be recognized in phosphotungstate (PTA) negative stain as stacks of membranous plates surrounded by a complex anastomosing network of tubules and vesicles. The extent of this tubular network is, however, much greater than can be observed in thin sections of whole cells. To determine which of the steps leading to the final negatively stained image may produce the observed changes, we have monitored each of the steps by other electron microscope and biochemical methods. The first damage to the membranes seems to occur during the initial isolation procedure as judged by the appearance of smooth patches on the freeze-fractured membrane faces that are normally covered with particles. Subsequent suspension of the Golgi fraction in water, to dilute the sucrose for negative staining, leads to the disappearnce of the stacking, to some tubulation and some vesiculation of the membranes as judged by thin section and freeze-cleave microscopy. The latter technique also reveals an increase in smooth-cleaving membrane faces. Application of the negative stain to the water-washed Golgi fraction, finally, produces extensive tubular arrays and a simultaneous decrease in the remaining large membranous vesicles. The freeze-cleaved tubular membranes appear essentially smooth except for small patches of aggregated particles. Parallel gel electrophoresis studies of the membranes and of the water and negative stain wash extracts indicate that protein extraction is involved in these morphological changes. PTA seems to be a particularly effective solvent for certain membrane proteins that are not removed by the water wash. These observations suggest that removal of membrane proteins alters structural restraints on the membrane lipids so that they behave semiautonomously like myelinics and form new artificial structures. This does not eliminate the possibility, however, that some tubules also exist in the Golgi apparatus in vivo.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3