Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens

Author:

Evans E1,Leung A1,Zhelev D1

Affiliation:

1. Department of Pathology, University of British Columbia, Vancouver, Canada.

Abstract

A simple micromechanical method has been used to directly measure the force of contraction in single mammalian phagocytes (blood granulocytes) during engulfment of large yeast pathogens. Both the time course of cell spreading over the yeast particle and increase in cell body contractile force were quantitated at three temperatures in the range of 23-35 degrees C. The surprising feature of the phagocyte response was that engulfment and cell body contraction occurred in a serial sequence: i.e., the phagocyte spread rapidly over the particle at a steady rate with no detectable cell body contraction; when spreading stopped, contraction force in the cell body then rose steadily to a plateau level that remained stationary until the next sequence of spreading and contraction. Both spreading and contraction exhibited abrupt start/stop kinetics. Also impressive, the cell contraction force stimulated by phagocytosis was quite large (approximately 10(-8) N)-two orders of magnitude larger than the force necessary to deform passive phagocytes to the same extent. If distributed uniformly over the cell cross section, the contraction force is equivalent to an average contractile stress of approximately 10(3) N/m2 (0.01 Atm). These physical measurements in situ set critical requirements for the mechanism of force generation in granulocytes, imply that a major increase in network cross-linking accompanies build-up in contractile force and that subsequent network dissolution is necessary for locomotion.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3