A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from the trans-Golgi network

Author:

Jones SM1,Crosby JR1,Salamero J1,Howell KE1

Affiliation:

1. Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver 80262.

Abstract

TGN38/41, an integral membrane protein predominantly localized to the trans-Golgi network, has been shown to cycle to the plasma membrane and return to the TGN within 30 min. (Ladinsky, M. S., and K. E. Howell. 1992. Eur. J. Cell Biol. 59:92-105). In characterizing the proteins which associate with TGN38/41, a peripheral 62-kD protein, two forms of rab6 and two other small GTP-binding proteins were identified by coimmunoprecipitation. However, approximately 90% of the 62-kD protein is cytosolic and is associated with the same subset of small GTP-binding proteins. Both the membrane and cytoplasmic complexes were characterized by sizing column fractionation and velocity sedimentation. The membrane complex was approximately 250 kD (11.6 S) consisting of the cytosolic complex and a heterodimer of TGN38/41 (160 kD). The cytosolic complex was approximately 86 kD (6.1 S) consisting of p62 and one small GTP-binding protein. Preliminary evidence indicates that phosphorylation of the p62 molecule regulates the dissociation of the cytosolic complex from TGN38/41. Functionally the cytosolic p62 complex must bind to TGN38/41 for the budding of exocytic transport vesicles from the TGN as assayed in a cell-free system (Salamero, J., E. S. Sztul, and K. E. Howell. 1990. Proc. Natl. Acad. Sci. USA. 87:7717-7721). Interference with p62, rab6 or TGN38, and TGN41 cytoplasmic domains by immunodepletion or competing peptides completely inhibited the budding of exocytic transport vesicles. These results support an essential role for interaction of the cytosolic p62/rab6 complex with TGN38/41 in budding of exocytic vesicles from the TGN.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3