Calcium buffer injections delay cleavage in Xenopus laevis blastomeres

Author:

Snow P1,Nuccitelli R1

Affiliation:

1. Division of Biological Sciences, University of California, Davis 95616.

Abstract

Microinjection of calcium buffers into the two-cell Xenopus laevis embryo delays cell division in a dose-dependent manner. Four calcium buffers in the BAPTA series with different affinities for calcium were used to distinguish between a localized calcium gradient regulating cleavage and the global calcium concentration regulating this event. DibromoBAPTA (Kd = 1.5 microM) was found to delay cleavage at the lowest intracellular concentration (1.3 mM) of the four buffers tested. The effectiveness of the calcium buffers was dependent upon the buffer dissociation constant but not in a linear fashion. The concentration of buffer required to delay cleavage increased as the buffer's dissociation constant shifted above or below that of the optimum buffer, dibromoBAPTA. This relationship between a calcium buffer's effectiveness at delaying cleavage and its calcium affinity provides support for the hypothesis that a calcium concentration gradient is required for normal cell cycle progression (Speksnijder, J. E., A. L. Miller, M. H. Weisenseel, T.-H. Chen, and L. F. Jaffe. 1989. Proc. Natl. Acad. Sci. USA. 86:6607-6611). DibromoBAPTA was also injected with two different amounts of coinjected calcium to test the possibility that the free calcium concentration of the buffer solution is the important parameter for delaying cleavage. However, we found that changes in buffer concentration have a much stronger effect than changes in the free calcium concentration. This observation supports the hypothesis that BAPTA-type buffers exert their effect by shuttling calcium from regions of high concentration to those of lower concentration, reducing any calcium concentration gradients present in the Xenopus embryo.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3