THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF TORPEDO MARMORATA

Author:

Sheridan Michael N.1

Affiliation:

1. From the Department of Biochemistry, Agricultural Research Council Institute of Animal Physiology, Cambridge, England.

Abstract

The fine structure of the electric organ of the fish Torpedo marmorata has been examined after osmium tetroxide or potassium permanganate fixation, acetone dehydration, and Araldite embedment. This organ consists of stacks of electroplaques which possess a dorsal noninnervated and a ventral richly innervated surface. Both surfaces are covered with a thin basement membrane. A tubular membranous network whose lumen is continuous with the extracellular space occupies the dorsal third of the electroplaque. Nerve endings, separated from the ventral surface of the electroplaque by a thin basement membrane, contain synaptic vesicles (diameter 300 to 1200 A), mitochondria, and electron-opaque granules (diameter 300 A). Projections from the nerve endings occupy the lumina of the finger-like invaginations of the ventral surface. The cytoplasm of the electroplaques contains the usual organelles. A "cellular cuff" surrounds most of the nerve fibers in the intercellular space, and is separated from the nerve fibre and its Schwann cell by a space containing connective tissue fibrils. The connective tissue fibrils and fibroblasts in the intercellular space are primarily associated with the dorsal surface of the electroplaque.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From historical expedition diaries to whole genome sequencing: A case study of the likely extinct Red Sea torpedo ray;Zoologica Scripta;2023-09-13

2. Electric organs;Fish Physiology;2023

3. A synthesis of deimatic behaviour;Biological Reviews;2022-08-08

4. What Ligand-Gated Ion Channels Can Tell Us About the Allosteric Regulation of G Protein-Coupled Receptors;Progress in Molecular Biology and Translational Science;2013

5. The Formation and Maturation of Neuromuscular Junctions;Patterning and Cell Type Specification in the Developing CNS and PNS;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3