Chronic denervation of rat hemidiaphragm: maintenance of fiber heterogeneity with associated increasing uniformity of myosin isoforms.

Author:

Carraro U,Morale D,Mussini I,Lucke S,Cantini M,Betto R,Catani C,Dalla Libera L,Danieli Betto D,Noventa D

Abstract

During several months of denervation, rat mixed muscles lose slow myosin, though with variability among animals. Immunocytochemical studies showed that all the denervated fibers of the hemidiaphragm reacted with anti-fast myosin, while many reacted with anti-slow myosin as well. This has left open the question as to whether multiple forms of myosin co-exist within individual fibers or a unique, possibly embryonic, myosin is present, which shares epitopes with fast and slow myosins. Furthermore, one can ask if the reappearance of embryonic myosin in chronically denervated muscle is related both to its re-expression in the pre-existing fibers and to cell regeneration. To answer these questions we studied the myosin heavy chains from individual fibers of the denervated hemidiaphragm by SDS PAGE and morphologically searched for regenerative events in the long term denervated muscle. 3 mo after denervation the severely atrophic fibers of the hemidiaphragm showed either fast or a mixture of fast and slow myosin heavy chains. Structural analysis of proteins sequentially extracted from muscle cryostat sections showed that slow myosin was still present 16 mo after denervation, in spite of the loss of the selective distribution of fast and slow features. Therefore muscle fibers can express adult fast myosin not only when denervated during their differentiation but also after the slow program has been expressed for a long time. Light and electron microscopy showed that the long-term denervated muscle maintained a steady-state atrophy for the rat's life span. Some of the morphological features indicate that aneural regeneration events continuously occur and significantly contribute to the increasing uniformity of the myosin gene expression in long-term denervated diaphragm.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3