Rod cells dissociated from mature salamander retina: ultrastructure and uptake of horseradish peroxidase.

Author:

Townes-Anderson E,MacLeish P R,Raviola E

Abstract

To test the effects of isolation on adult neurons, we investigated the fine structure and synaptic activity of rod cells dissociated from the mature salamander retina and maintained in vitro. First, freshly isolated rod cells appeared remarkably similar to their counterparts in the intact retina: the outer segment retained its stack of membranous disks and the inner segment contained its normal complements of organelles. Some reorganization of the cell surface, however, was observed: (a) radial fins, present at the level of the cell body, were lost; and (b) the apical and distal surfaces of the inner and outer segments, respectively became broadly fused. Second, the synaptic endings or pedicles retained their presynaptic active zones: reconstruction of serially sectioned pedicles by using three-dimensional computer graphics revealed that 73% of the synaptic ribbons remained attached to the plasmalemma either at the cell surface or along its invaginations. Finally, tracer experiments that used horseradish peroxidase demonstrated that dissociated rod cells recycled synaptic vesicle membrane in the dark and thus probably released transmitter by exocytosis. Under optimal conditions, a maximum of 40% of the synaptic vesicles within the pedicle were labeled. As in the intact retina, uptake of horseradish peroxidase was suppressed by light. Thus, freshly dissociated receptor neurons retained many of their adult morphological and physiological characteristics. In long-term culture, the photoreceptors tended to round up; however, active zones were present even 2 wk after removal of the postsynaptic processes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3