Characterization of a myosin heavy chain in the conductive system of the adult and developing chicken heart.

Author:

González-Sánchez A,Bader D

Abstract

A monoclonal antibody (anterior latissimus dorsi 58 [ALD58]; antimyosin heavy chain, MHC) directed against myosin from slow tonic muscle was found to react specifically with the striated muscle cells of the conductive system in the adult chicken heart. This monoclonal antibody was used to study the expression of myosin in the conductive system of the adult and developing heart. Using immunofluorescence microscopy with ALD58, muscle cells of the conductive system were demonstrated in both the atria and ventricles of the adult heart as previously shown by Sartore et al. (Sartore, S., S. Pierobon-Bormioli, and S. Schiafinno, 1978, Nature (Lond.), 274: 82-83). Radioactive myosin from adult atria and ventricles was precipitated with ALD58 and subjected to limited proteolysis and subsequent peptide mapping. Peptide maps of ALD58 reactive myosin from atria and ventricles were very similar, if not identical, but differed from peptide maps of ordinary atrial and ventricular myosin. The same antibody was used to study cardiac myogenesis in the chick embryo. When ALD58 was reacted with myosin isolated from atria and ventricles at selected stages of development in radioimmunoassays, reactivity was not observed until the last week of embryonic life (greater than 15 d of egg incubation). Thereafter concomitant and progressively increased reactivity was observed in atrial and ventricular preparations. Also, no ALD58 positive cells were observed in immunofluorescence studies of embryonic hearts until 17 d of egg incubation. Primary cell cultures of embryonic hearts also proved to be negative for this antibody. This study demonstrates that an epitope recognized by ALD58 associated with an antimyosin heavy chain of striated muscle cells of the adult heart conductive system is absent or present in only small amounts in the early embryonic heart.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3