A new probe for super-resolution imaging of membranes elucidates trafficking pathways

Author:

Revelo Natalia H.1123,Kamin Dirk11,Truckenbrodt Sven114,Wong Aaron B.123,Reuter-Jessen Kirsten13,Reisinger Ellen13,Moser Tobias133,Rizzoli Silvio O.1133

Affiliation:

1. Department of Neuro- and Sensory Physiology; European Neuroscience Institute; and InnerEarLab and Molecular Biology of Cochlear Neurotransmission Group, Department of Otolaryngology; University Medical Center Göttingen, 37099 Göttingen, Germany

2. International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany

3. Collaborative Research Center 889 and Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, 37099 Göttingen, Germany

4. International Max Planck Research School for Molecular Biology, 37077 Göttingen, Germany

Abstract

The molecular composition of the organelles involved in membrane recycling is difficult to establish as a result of the absence of suitable labeling tools. We introduce in this paper a novel probe, named membrane-binding fluorophore-cysteine-lysine-palmitoyl group (mCLING), which labels the plasma membrane and is taken up during endocytosis. It remains attached to membranes after fixation and permeabilization and can therefore be used in combination with immunostaining and super-resolution microscopy. We applied mCLING to mammalian-cultured cells, yeast, bacteria, primary cultured neurons, Drosophila melanogaster larval neuromuscular junctions, and mammalian tissue. mCLING enabled us to study the molecular composition of different trafficking organelles. We used it to address several questions related to synaptic vesicle recycling in the auditory inner hair cells from the organ of Corti and to investigate molecular differences between synaptic vesicles that recycle actively or spontaneously in cultured neurons. We conclude that mCLING enables the investigation of trafficking membranes in a broad range of preparations.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3