STUDIES ON THE FINE STRUCTURE OF ULTRACENTRIFUGED SPINAL GANGLION CELLS

Author:

Beams H. W.1,Tahmisian T. N.1,Anderson Everett1,Devine Rosemarie1

Affiliation:

1. From the Department of Zoology, State University of Iowa, Iowa City, and the Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Illinois

Abstract

The following structures were observed in electron micrographs of the mouse spinal ganglion cells: Nissl bodies composed of both aggregated rough-type, largely oriented, membranes of the endoplasmic reticulum and discrete particles; short rodlike mitochondria with well-developed transverse, obliquely or longitudinally arranged cristae, and a relatively typical Golgi complex. The components of ultracentrifuged ganglion cells (400,000 times gravity for 20 minutes) are stratified, the layers appearing in the order of their decreasing density as follows: (1) A microsomal or ergastoplasmic layer which may be further divided into three sublayers without sharp boundaries, namely, a discrete particle layer, a layer of discrete particles and highly distorted membranes of the endoplasmic reticulum, and a layer composed of relatively intact, but stretched membranes of the endoplasmic reticulum and discrete particles. (2) Mitochondria constitute a relatively broad layer. They are sometimes stretched; however, they retain most of their fine structure. The stratified nucleus is found within the mitochondrial layer. (3) A relatively wide layer of tightly packed vesicles. (4) At the centripetal end, resting against the cell membrane, are a few lipid vacuoles. A comparison is made between the ultrastructure of the stratified layers in situ and those described by others in differentially ultracentrifuged homogenates.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3