Affiliation:
1. Laboratoire de Biologie et Génétique du Développement, URA CNRS 256, Université de Rennes I, France.
Abstract
In Xenopus embryos, previous results failed to detect changes in the activity of free calcium ions (Ca2+i) during cell division using Ca2(+)-selective microelectrodes, while experiments with aequorin yielded uncertain results complicated by the variation during cell division of the aequorin concentration to cell volume ratio. We now report, using Ca2(+)-selective microelectrodes, that cell division in Xenopus embryos is accompanied by periodic oscillations of the Ca2+i level, which occur with a periodicity of 30 min, equal to that of the cell cycle. These Ca2+i oscillations were detected in 24 out of 35 experiments, and had a mean amplitude of 70 nM, around a basal Ca2+i level of 0.40 microM. Ca2+i oscillations did not take place in the absence of cell division, either in artificially activated eggs or in cleavage-blocked embryos. Therefore, Ca2+i oscillations do not represent, unlike intracellular pH oscillations (Grandin, N., and M. Charbonneau. J. Cell Biol. 111:523-532. 1990), a component of the basic cell cycle ("cytoplasmic clock" or "master oscillator"), but appear to be more likely related to some events of mitosis.
Publisher
Rockefeller University Press
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献