Affiliation:
1. Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021.
Abstract
In striking contrast to most other transporting epithelia (e.g., urinary or digestive systems), where Na,K-ATPase is expressed basolaterally, the retinal pigment epithelium (RPE) cells display Na,K-ATPase pumps on the apical membrane. We report here studies aimed to identify the mechanisms underlying this polarity "reversal" of the RPE Na,K-ATPase. By immunofluorescence on thin frozen sections, both alpha and beta subunits were localized on the apical surface of both freshly isolated rat RPE monolayers and RPE monolayers grown in culture. The polarity of the RPE cell is not completely reversed, however, since aminopeptidase, an apically located protein in kidney epithelia, was also found on the apical surface of RPE cells. We used subunit- and isoform-specific cDNA probes to determine that RPE Na,K-ATPase has the same isoform (alpha 1) as the one found in kidney. Ankyrin and fodrin, proteins of the basolateral membrane cytoskeleton of kidney epithelial cells known to be associated with the Na,K-ATPase (Nelson, W. J., and R. W. Hammerton. 1989. J. Cell Biol. 110:349-357) also displayed a reversed apical localization in RPE and were intimately associated to Na,K-ATPase, as revealed by cross-linking experiments. These results indicate that an entire membrane-cytoskeleton complex is assembled with opposite polarity in RPE cells. We discuss our observations in the context of current knowledge on protein sorting mechanisms in epithelial cells.
Publisher
Rockefeller University Press
Cited by
163 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献