Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway.

Author:

He Y1,Grinnell F1

Affiliation:

1. Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical School, Dallas 75235.

Abstract

Mechanical force regulates gene expression and cell proliferation in a variety of cell types, but the mechanotransducers and signaling mechanisms involved are highly speculative. We studied the fibroblast signaling mechanism that is activated when cells are switched from mechanically stressed to mechanically relaxed conditions, i.e., stress relaxation. Within 10 min after initiation of stress relaxation, we observed a transient 10-20-fold increase in cytoplasmic cyclic AMP (cAMP) and a threefold increase in protein kinase A activity. The increase in cAMP depended on stimulation of adenylyl cyclase rather than inhibition of phosphodiesterase. Generation of cAMP was inhibited by indomethacin, and release of arachidonic acid was found to be an upstream step of the pathway. Activation of signaling also depended on influx of extracellular Ca2+ because addition of EGTA to the incubations at concentrations just sufficient to exceed Ca2+ in the medium inhibited the stress relaxation-dependent increase in free arachidonic acid and cAMP. This inhibition was overcome by adding CaCl2 to the medium. On the other hand, treating fibroblasts in mechanically stressed cultures with the calcium ionophore A23187-stimulated arachidonic acid and cAMP production even without stress relaxation. In summary, our results show that fibroblast stress relaxation results in activation of a Ca(2+)-dependent, adenylyl cyclase signaling pathway. Overall, the effect of stress relaxation on cAMP and PKA levels was equivalent to that observed after treatment of cells with forskolin.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3