Human gamma-tubulin functions in fission yeast.

Author:

Horio T1,Oakley B R1

Affiliation:

1. Department of Molecular Genetics, Ohio State University, Columbus 43210.

Abstract

gamma-Tubulin is a phylogenetically conserved component of microtubule-organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3