Differential interaction of splicing snRNPs with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei.

Author:

Ferreira J A1,Carmo-Fonseca M1,Lamond A I1

Affiliation:

1. Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Portugal.

Abstract

In the interphase nucleus of mammalian cells the U1, U2, U4/U6, and U5 small nuclear ribonucleoproteins (snRNPs), which are subunits of spliceosomes, associate with specific subnuclear domains including interchromatin granules and coiled bodies. Here, we analyze the association of splicing snRNPs with these structures during mitosis and reassembly of daughter nuclei. At the onset of mitosis snRNPs are predominantly diffuse in the cytoplasm, although a subset remain associated with remnants of coiled bodies and clusters of mitotic interchromatin granules, respectively. The number and size of mitotic coiled bodies remain approximately unchanged from metaphase to early telophase while snRNP-containing clusters of mitotic interchromatin granules increase in size and number as cells progress from anaphase to telophase. During telophase snRNPs are transported into daughter nuclei while the clusters of mitotic interchromatin granules remain in the cytoplasm. The timing of nuclear import of splicing snRNPs closely correlates with the onset of transcriptional activity in daughter nuclei. When transcription restarts in telophase cells snRNPs have a diffuse nucleoplasmic distribution. As cells progress to G1 snRNP-containing clusters of interchromatin granules reappear in the nucleus. Coiled bodies appear later in G1, although the coiled body antigen, p80 coilin, enters early into telophase nuclei. After inhibition of transcription we still observe nuclear import of snRNPs and the subsequent appearance of snRNP-containing clusters of interchromatin granules, but not coiled body formation. These data demonstrate that snRNP associations with coiled bodies and interchromatin granules are differentially regulated during the cell division cycle and suggest that these structures play distinct roles connected with snRNP structure, transport, and/or function.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3