Affiliation:
1. From the Departments of Pathology and Anatomy, Washington University School of Medicine, St. Louis, Missouri 63110
Abstract
Light and electron microscope studies were conducted on the nature of the degenerative changes in amputated nerve fibers of cultured rat sensory ganglia and on the effects of media with differing calcium concentrations upon these changes. With glucose-enriched Eagle's media (MEM) containing 1.6 mM calcium, the amputated myelinated and unmyelinated axons undergo a progressive granular disintegration of their axoplasm with collapse and fragmentation of myelin sheaths between 6 and 24 h after transection. With MEM containing only 25–50 µM calcium, the granular axoplasmic degeneration does not occur in transected fibers and they retain their longitudinal continuity and segmental myelin ensheathment for at least 48 h. Addition of 6 mM EGTA to MEM (reducing the estimated Ca++ below 0.3 µM) results in the structural preservation of both microtubules and neurofilaments within transected axons. A transient focal swelling of amputated axons occurs, however, in cultures with normal and reduced calcium. These observations suggest that an alteration in the permeability of the axolemma is a crucial initiating event leading to axonal degenerative changes distal to nerve transection. The loss of microtubules and neurofilaments and the associated granular alterations of the axoplasm in transected fibers appears to result from the influx of calcium into the axoplasm.
Publisher
Rockefeller University Press
Cited by
221 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献