Sperm surface proteins persist after fertilization.

Author:

Gundersen G G,Shapiro B M

Abstract

Certain sperm components labeled with fluorescein isothiocyanate or its radioactive derivative, 125I-diiodofluorescein isothiocyanate (125IFC), are transferred at fertilization to the egg, where they persist throughout early cleavage stages at a localized site in the embryo cytoplasm (Gabel, C. A., E. M. Eddy, and B. M. Shapiro, 1979, Cell, 18:207-215; Gundersen, G. G., C. A. Gabel, and B. M. Shapiro, 1982, Dev. Biol., 93:59-72). By using image intensification we have extended these observations in the sea urchin to the pluteus larval stage, in which greater than 60% of the embryos have localized fluorescent sperm components. Because of the unusual persistence of the sperm components in the embryo, a characterization of the nature of the labeled species in sea urchin sperm was undertaken. Approximately 10% of the 125IFC was in sperm polypeptides of Mr greater than 15,000. These proteins were on the sperm surface as shown by their sensitivity to externally added proteases. The remainder of the 125IFC in sperm was in several low-molecular-weight species, none of which was 125IFC-derivatized phospholipid. To determine if any labeled sperm polypeptides remained intact in the embryo after fertilization, 125IFC-labeled sperm proteins were recovered from one-cell and late gastrula stage embryos by using an anti-IFC immunoadsorbent. Most of the labeled sperm proteins were degraded shortly after fertilization; however, distinct sets of labeled polypeptides were recovered from both one-cell and gastrula stage embryos. Six of the labeled polypeptides recovered from both embryonic stages had identical SDS gel mobilities as labeled sperm polypeptides. Other polypeptides in the embryos appeared to arise from limited proteolysis of sperm proteins. Thus, in this physiological cell fusion system, individual sperm proteins are transferred to the egg at fertilization, and some persist intact or after specific, limited degradation long after gamete fusion, until at least the late gastrula stage.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3