Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture.

Author:

Olwin B B1,Hauschka S D1

Affiliation:

1. Department of Biochemistry, University of Wisconsin, Madison 53706.

Abstract

One characteristic of skeletal muscle differentiation is the conversion of proliferating cells to a population that is irreversibly postmitotic. This developmental change can be induced in vitro by depriving the cultures of specific mitogens such as fibroblast growth factor (FGF). Analysis of cell surface FGF receptor (FGFR) in several adult mouse muscle cell lines and epidermal growth factor receptor (EGFR) in mouse MM14 cells reveals a correlation between receptor loss and the acquisition of a postmitotic phenotype. Quiescent MM14 cells, mitogen-depleted, differentiation-defective MM14 cells, and differentiated BC3H1 muscle cells (a line that fails to become postmitotic upon differentiation) retained their cell surface FGFR. These results indicate that FGFR loss is not associated with either reversible cessation of muscle cell proliferation or biochemical differentiation and thus, further support a correlation between receptor loss and acquisition of a postmitotic phenotype. Comparison of the kinetics for growth factor receptor loss and for commitment of MM14 cells to a postmitotic phenotype reveals that FGFR rises transiently from approximately 700 receptors/cell to a maximum of approximately 2,000 receptors/cell 12 h after FGF removal, when at the same time, greater than 95% of the cells are postmitotic. FGFR levels then decline to undetectable levels by 24 h after FGF removal. During the interval in which FGFR increases and then disappears there is no change in its affinity for FGF. The transient increase in growth factor receptors appears to be due to a decrease in ligand-mediated internalization because EGFR, which undergoes an immediate decline when cultures are deprived of FGF (Lim, R. W., and S. D. Hauschka. 1984. J. Cell Biol. 98:739-747), exhibits a similar transient rise when cultures are grown in media containing both EGF and FGF before switching the cells to media without these added factors. These results indicate that the loss of certain growth factor receptors is a specific phenotype acquired during skeletal muscle differentiation, but they do not resolve whether regulation of FGFR number is causal for initiation of the postmitotic phenotype. A general model is presented in the discussion.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3