Response of neutrophils to stimulus infusion: differential sensitivity of cytoskeletal activation and oxidant production.

Author:

Omann G M1,Sklar L A1

Affiliation:

1. Scripps Clinic and Research Foundation, Department of Immunology, La Jolla, California 92037.

Abstract

The response of human neutrophils to N-formyl peptides were studied under conditions where ligand binding was controlled by infusing a cell suspension with the peptide over a time period comparable to the normal half-time for binding. Receptor occupancy was measured in real time with a fluorescently labeled peptide using flow cytometry. This binding was approximated by a simple reversible model using typical on (7 X 10(8) M- min-1) and off (0.35/min) rate constants and the infusion rates (0.02-0.2 nM/min). Under conditions of stimulus infusion intracellular calcium elevation, superoxide generation, and right angle light scatter and F-actin formation were measured. As the infusion rate was decreased into the range of 10 pM/min, lowering the rate of increase of receptor occupancy to approximately 0.5% per min, the calcium and right angle light scatter responses elongated in time and decreased in magnitude. Superoxide generation decreased below infusion rates of approximately 100 pM/min (occupancy increasing at a rate in the range of 5% per min). This behavior could contribute to differences between chemotactic responses, which appear to require low rates of receptor occupancy over long periods, and bactericidal or inflammatory responses (free radical generation and degranulation), which require bursts of occupancy of several percent of the receptors.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3