Identification and localization of a novel, cytoskeletal, centrosome-associated protein in PtK2 cells.

Author:

Baron A T1,Salisbury J L1

Affiliation:

1. Laboratory for Cell Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.

Abstract

Antisera raised against centrin (Salisbury, J.L., A.T. Baron, B. Surek, and M. Melkonian. 1984. J. Cell Biol. 99:962-970) have been used, here, to identify a centrosome-associated protein with an Mr of 165,000. Immunocytochemistry indicates that this protein is a component of pericentriolar satellites, basal feet, and pericentriolar matrix of interphase cells. These components of pericentriolar material are, in part, composed of 3-8-nm-diam filaments, which interconnect to form a three-dimensional pericentriolar lattice. We conclude that the 165,000-Mr protein is immunologically related to centrin, and that it is a component of a novel centrosome-associated cytoskeletal filament system. Microtubule organizing centers such as the flagellar apparatus of algal cells, spindle pole body of yeast cells, and centrosome of mammalian cells are homologous structures essential for cytoplasmic organization and cellular proliferation. Molecular cloning studies have recently shown that the cell cycle gene product CDC31, required for spindle pole body duplication, shares 50% sequence homology with centrin (Huang, B., A. Mengersen, and V.D. Lee. 1988. J. Cell Biol. 107:133-140). The evolutionary conservation of centrin-related sequences and immunologic epitopes to microtubule organizing centers of divergent phylogeny suggests that a functional attribute(s) may have been conserved as well. Elucidation of a common thread between these related molecules may be fundamental to our understanding of cell structure and function.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3