Early proteostasis of caveolins synchronizes trafficking, degradation, and oligomerization to prevent toxic aggregation

Author:

Morales-Paytuví Frederic1ORCID,Fajardo Alba1ORCID,Ruiz-Mirapeix Carles1ORCID,Rae James2ORCID,Tebar Francesc3ORCID,Bosch Marta13ORCID,Enrich Carlos3ORCID,Collins Brett M.2ORCID,Parton Robert G.24ORCID,Pol Albert135ORCID

Affiliation:

1. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) 1 Lipid Trafficking and Disease Group, , Barcelona, Spain

2. Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) 2 , Brisbane, Australia

3. Universitat de Barcelona 4 Department of Biomedical Sciences, Faculty of Medicine, , Barcelona, Spain

4. The University of Queensland (UQ) 3 Centre for Microscopy and Microanalysis (CMM), , Brisbane, Australia

5. Institució Catalana de Recerca i Estudis Avançats (ICREA) 5 , Barcelona, Spain

Abstract

Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.

Funder

Ministerio de Ciencia e Innovación

Centres de Recerca de Catalunya

Generalitat de Catalunya

National Health and Medical Research Council

Australian Research Council

Foreign portfolio investment

European Union

European Research Council

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3