ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks

Author:

Simon François123ORCID,Tinevez Jean-Yves45ORCID,van Teeffelen Sven123ORCID

Affiliation:

1. Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine, Université de Montréal 1 , Montréal, Quebec, Canada

2. Microbial Morphogenesis and Growth Lab, Institut Pasteur 2 , , Paris, France

3. Université de Paris Cité 2 , , Paris, France

4. Image Analysis Hub, Institut Pasteur 3 , , Paris, France

5. Université de Paris Cité 3 , , Paris, France

Abstract

Single-particle tracking microscopy is a powerful technique to investigate how proteins dynamically interact with their environment in live cells. However, the analysis of tracks is confounded by noisy molecule localization, short tracks, and rapid transitions between different motion states, notably between immobile and diffusive states. Here, we propose a probabilistic method termed ExTrack that uses the full spatio-temporal information of tracks to extract global model parameters, to calculate state probabilities at every time point, to reveal distributions of state durations, and to refine the positions of bound molecules. ExTrack works for a wide range of diffusion coefficients and transition rates, even if experimental data deviate from model assumptions. We demonstrate its capacity by applying it to slowly diffusing and rapidly transitioning bacterial envelope proteins. ExTrack greatly increases the regime of computationally analyzable noisy single-particle tracks. The ExTrack package is available in ImageJ and Python.

Funder

European Research Council

Integrative Biology of Emerging Infectious Diseases

France BioImaging

Mairie de Paris “Emergence(s)”

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec

Volkswagen Foundation

Université de Montréal

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3