Unraveling the kinetochore nanostructure in Schizosaccharomyces pombe using multi-color SMLM imaging

Author:

Virant David12ORCID,Vojnovic Ilijana1234ORCID,Winkelmeier Jannik1234ORCID,Endesfelder Marc5ORCID,Turkowyd Bartosz1234ORCID,Lando David6ORCID,Endesfelder Ulrike1234ORCID

Affiliation:

1. Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology 1 , Marburg, Germany

2. and LOEWE Center for Synthetic Microbiology 1 , Marburg, Germany

3. Department of Physics, Carnegie Mellon University 2 , Pittsburgh, PA, USA

4. Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn 3 , Bonn, Germany

5. Institute for Assyriology and Hittitology, Ludwig-Maximilians-Universität München 4 , München, Germany

6. Department of Biochemistry, University of Cambridge 5 , Cambridge, UK

Abstract

The key to ensuring proper chromosome segregation during mitosis is the kinetochore (KT), a tightly regulated multiprotein complex that links the centromeric chromatin to the spindle microtubules and as such leads the segregation process. Understanding its architecture, function, and regulation is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in structural detail so far. In this study, we construct a nanometer-precise in situ map of the human-like regional KT of Schizosaccharomyces pombe using multi-color single-molecule localization microscopy. We measure each protein of interest (POI) in conjunction with two references, cnp1CENP-A at the centromere and sad1 at the spindle pole. This allows us to determine cell cycle and mitotic plane, and to visualize individual centromere regions separately. We determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI and, consequently, build an in situ KT model with unprecedented precision, providing new insights into the architecture.

Funder

Max Planck Society

Boehringer Ingelheim Fonds

Carnegie Mellon University

National Science Foundation

Bonn University

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3