Affiliation:
1. School of Arts and Sciences, University of Pennsylvania 1 Department of Biology, , Philadelphia, PA, USA
Abstract
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that lead to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA that provides a simple graphical user interface requiring only a gene name; integrates widely used molecular evolution tools to detect positive selection in rodents, primates, carnivores, birds, and flies; and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 centromere proteins, we find statistical evidence of positive selection within loops and turns of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of mouse CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
Funder
Swiss National Science Foundation
National Institutes of Health
Publisher
Rockefeller University Press
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献