THE CELL ENVELOPES OF TWO EXTREMELY HALOPHILIC BACTERIA

Author:

Brown A. D.1,Shorey C. D.1

Affiliation:

1. From the Department of Microbiology, University of New South Wales, Kensington, Sydney, and the Electronmicroscope Unit, University of Sydney, Sydney, Australia

Abstract

The cell envelope of Halobacterium halobium was seen in thin sections of permanganate-fixed cells to consist of one membrane. This membrane appeared mostly as a unit membrane but in a few preparations it resembled a 5-layered compound membrane. The cell envelope of Halobacterium salinarium at high resolution was always seen as a 5-layered structure different in appearance from the apparent compound membrane of H. halobium. The "envelopes" which were isolated in 12.5 per cent NaCl from each organism were indistinguishable from each other in the electron microscope and comprised, in each case, a single unit membrane with an over-all thickness of about 110 A. Some chemical analyses were made of isolated membranes after freeing them from salt by precipitating and washing with trichloroacetic acid. Such precipitated membranes consisted predominantly of protein, with little carbohydrate and no peptido-aminopolysaccharide (mucopeptide). Sectioned whole cells of H. halobium contained intracellular electron-opaque structures of unknown function.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Purple Matter, Membranes and ‘Molecular Pumps’ in Rhodopsin Research (1960s–1980s);Journal of the History of Biology;2012-08-21

2. Introduction The archaea: Their history and significance;The Biochemistry of Archaea (Archaebacteria);1993

3. Halobacterial glycoprotein biosynthesis;Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes;1987-04

4. Etophysiology of the aerobic halophilic archaebacteria;Systematic and Applied Microbiology;1986-05

5. Ordered arrays of Ca2+-ATPase on the cytoplasmic surface of isolated sarcoplasmic reticulum;Biophysical Journal;1985-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3