Interaction of astrochondrin with extracellular matrix components and its involvement in astrocyte process formation and cerebellar granule cell migration.

Author:

Streit A1,Nolte C1,Rásony T1,Schachner M1

Affiliation:

1. Department of Neurobiology, University of Heidelberg, F.R.G.

Abstract

We have recently characterized a chondroitin sulfate proteoglycan from the murine central nervous system which is expressed by astrocytes in vitro and carries the L2/HNK-1 and L5 carbohydrate structures. In the present study, we provide evidence that its three core proteins of different size are similar in their proteolytic peptide maps and thus designate this group of structurally related molecules astrochondrin. During development, astrochondrin and the L5 carbohydrate were hardly detectable in the brain of 14-d-old mouse embryos by Western blot analysis. Expression of astrochondrin and the L5 epitope was highest at postnatal day 8, the peak of cerebellar granule cell migration and Bergmann glial process formation, and decreased to weakly detectable levels in the adult. Immunocytochemical localization of astrochondrin in the cerebellar cortex of 6-d-old mice showed association of immunoreactivity with the cell surface of astrocytes, including Bergmann glial processes and astrocytes in the internal granular layer or prospective white matter. Endfeet of astrocytes contacting the basal lamina of endothelial and meningeal cells and contact sites between Bergmann glial processes and granule cells also showed detectable levels of astrochondrin. Furthermore, granule cell axons in the molecular layer were astrochondrin immunoreactive. In the adult, astrochondrin immunoreactivity was weakly present in the internal granular layer and white matter. Both Fab fragments of polyclonal antibodies to astrochondrin and monovalent fragments of the L5 monoclonal antibody reduced the formation of processes of mature GFAP-positive astrocytes on laminin and collagen type IV, but not on fibronectin as substrata. Interestingly, the initial attachment of astrocytic cell bodies was not disturbed by these antibodies. Antibodies to astrochondrin also reduced the migration of granule cells in the early postnatal mouse cerebellar cortex. In a solid phase radioligand binding assay, astrochondrin was shown to bind to the extracellular matrix components laminin and collagen type IV, being enhanced in the presence of Ca2+, but not to fibronectin, J1/tenascin or other neural recognition molecules. Furthermore, astrochondrin interacted with collagen types III and V, less strongly with collagen types I, II, and IX, but not with collagen type VI. The interaction of astrochondrin with collagen types III and V was saturable and susceptible to increasing ionic strength, and could be competed by chondroitin sulfate, heparin, and dextran sulfate, but not by hyaluronic acid, glucose-6-phosphate, or neuraminic acid.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3