Polarity and reorganization of the endoplasmic reticulum during fertilization and ooplasmic segregation in the ascidian egg.

Author:

Speksnijder J E1,Terasaki M1,Hage W J1,Jaffe L F1,Sardet C1

Affiliation:

1. Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht.

Abstract

During the first cell cycle of the ascidian egg, two phases of ooplasmic segregation create distinct cytoplasmic domains that are crucial for later development. We recently defined a domain enriched in ER in the vegetal region of Phallusia mammillata eggs. To explore the possible physiological and developmental function of this ER domain, we here investigate its organization and fate by labeling the ER network in vivo with DiIC16(3), and observing its distribution before and after fertilization in the living egg. In unfertilized eggs, the ER-rich vegetal cortex is overlaid by the ER-poor but mitochondria-rich subcortical myoplasm. Fertilization results in striking rearrangements of the ER network. First, ER accumulates at the vegetal-contraction pole as a thick layer between the plasma membrane and the myoplasm. This accompanies the relocation of the myoplasm toward that region during the first phase of ooplasmic segregation. In other parts of the cytoplasm, ER becomes progressively redistributed into ER-rich and ER-poor microdomains. As the sperm aster grows, ER accumulates in its centrosomal area and along its astral rays. During the second phase of ooplasmic segregation, which takes place once meiosis is completed, the concentrated ER domain at the vegetal-contraction pole moves with the sperm aster and the bulk of the myoplasm toward the future posterior side of the embryo. These results show that after fertilization, ER first accumulates in the vegetal area from which repetitive calcium waves are known to originate (Speksnijder, J. E. 1992. Dev. Biol. 153:259-271). This ER domain subsequently colocalizes with the myoplasm to the presumptive primary muscle cell region.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3