Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells.

Author:

Gottlieb T A1,Ivanov I E1,Adesnik M1,Sabatini D D1

Affiliation:

1. Department of Cell Biology, New York University Medical Center, New York 10016.

Abstract

Treatment with cytochalasin D, a drug that acts by inducing the depolymerization of the actin cytoskeleton, selectively blocked endocytosis of membrane bound and fluid phase markers from the apical surface of polarized MDCK cells without affecting the uptake from the basolateral surface. Thus, in MDCK cell transformants that express the VSV G protein, cytochalasin blocked the internalization of an anti-G mAb bound to apical G molecules, but did not reduce the uptake of antibody bound to the basolateral surface. The selective effect of cytochalasin D on apical endocytosis was also demonstrated by the failure of the drug to reduce the uptake of 125I-labeled transferrin, which occurs by receptor-mediated endocytosis, via clathrin-coated pits, almost exclusively from the basolateral surface. The actin cytoskeleton appears to play a critical role in adsorptive as well as fluid phase apical endocytic events, since treatment with cytochalasin D prevented the apical uptake of cationized ferritin, that occurs after the marker binds to the cell surface, as well as uptake of Lucifer yellow, a fluorescent soluble dye. Moreover, the drug efficiently blocked infection of the cells with influenza virus, when the viral inoculum was applied to the apical surface. On the other hand, it did not inhibit the basolateral uptake of Lucifer yellow, nor did it prevent infection with VSV from the basolateral surface, or with influenza when this virus was applied to monolayers in which the formation of tight junctions had been prevented by depletion of calcium ions. EM demonstrated that cytochalasin D leads to an increase in the number of coated pits in the apical surface where it suppresses the pinching off of coated vesicles. In addition, in drug-treated cells cationized ferritin molecules that were bound to microvilli were not cleared from the microvillar surface, as is observed in untreated cells. These findings indicate that there is a fundamental difference in the process by which endocytic vesicles are formed at the two surfaces of polarized epithelial cells and that the integrity and/or the polymerization of actin filaments are required at the apical surface. Actin filaments in microvilli may be part of a mechanochemical motor that moves membrane components along the microvillar surface towards intermicrovillar spaces, or provides the force required for converting a membrane invagination or pit into an endocytic vesicle within the cytoplasm.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 409 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3